\qquad
Math 3113 Section 01
Practice Exam 3
November 5, 2015
Follow the instructions for each question and show enough of your work so that I can follow your thought process. If I can't read your work or answer, you will receive little or no credit!

1. Let $T: P_{2} \rightarrow P_{2}$ be a linear transformation defined by

$$
T\left(a_{0}+a_{1} t+a_{2} t^{2}\right)=3 a_{0}+\left(5 a_{0}-2 a_{1}\right) t+\left(4 a_{1}+a_{2}\right) t^{2}
$$

Find a matrix A, representing T with respect to the basis $B=\left\{1, t, t^{2}\right\}$ and find the eigenvalues and eigenvectors of T.
2. Let $T: P_{1} \rightarrow P_{1}$ be a linear transformation defined by

$$
T\left(a_{0}+a_{1} t\right)=\left(2 a_{0}+7 a_{1}\right)+\left(7 a_{0}+2 a_{1}\right) t
$$

Find a matrix A, representing T with respect to the basis $B=\{1, t\}$ and find the eigenvalues and eigenvectors of T.
3. Compute the eigenvalues and eigenvectors of A if

$$
A=\left(\begin{array}{cc}
1 & -2 \\
1 & 3
\end{array}\right)
$$

4. Compute the eigenvalues and eigenvectors of A if

$$
A=\left(\begin{array}{cc}
3 & 1 \\
-2 & 5
\end{array}\right)
$$

5. Let u be a vector in \mathbb{R}^{n}. Define $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ by

$$
T(x)=\operatorname{Proj}_{u}(x)=\frac{\langle x, u\rangle}{\|u\|^{2}} u
$$

Show that T is a linear transformation. Here, $\left\langle v_{1}, v_{2}\right\rangle$ is just the dot product in \mathbb{R}^{n}.
6. Let $W=\operatorname{span}\left\{v_{1}, \ldots, v_{k}\right\}$ be a subspace of \mathbb{R}^{n}. Define $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ by

$$
T(x)=\operatorname{Proj}_{W}(x)=\sum_{j=1}^{k} \frac{\left\langle x, v_{j}\right\rangle}{\left\|v_{j}\right\|^{2}} v_{j}
$$

The previous problem will generalize to show that T is a linear transformation. Show this. Moreover compute the kernel of T. (HINT: you won't need to compute any thing to deduce the kernel)
7. Let $W=\operatorname{span}\left\{v_{1}, v_{2}, v_{3}\right\}$ be a subspace of \mathbb{R}^{4} where

$$
v_{1}=\left(\begin{array}{l}
1 \\
1 \\
1 \\
1
\end{array}\right), v_{2}=\left(\begin{array}{l}
0 \\
1 \\
1 \\
1
\end{array}\right), v_{3}=\left(\begin{array}{l}
0 \\
0 \\
1 \\
1
\end{array}\right)
$$

Using the Gram-Schmidt process, find an orthonormal basis for W.
8. Let $W=\operatorname{span}\left\{v_{1}, v_{2}\right\}$ be a subspace of \mathbb{R}^{3} where

$$
v_{1}=\left(\begin{array}{c}
3 \\
-4 \\
5
\end{array}\right), v_{2}=\left(\begin{array}{c}
-3 \\
14 \\
-7
\end{array}\right)
$$

Using the Gram-Schmidt process, find an orthonormal basis for W.
9. Let P be a $n \times n$ matrix whose columns are orthonormal. Show $\langle P x, P y\rangle=0$ if and only if $\langle x, y\rangle=0$. Here $\left\langle v_{1}, v_{2}\right\rangle$ is the dot product in \mathbb{R}^{n}

